Package: riAFTBART 0.3.3
riAFTBART: A Flexible Approach for Causal Inference with Multiple Treatments and Clustered Survival Outcomes
Random-intercept accelerated failure time (AFT) model utilizing Bayesian additive regression trees (BART) for drawing causal inferences about multiple treatments while accounting for the multilevel survival data structure. It also includes an interpretable sensitivity analysis approach to evaluate how the drawn causal conclusions might be altered in response to the potential magnitude of departure from the no unmeasured confounding assumption.This package implements the methods described by Hu et al. (2022) <doi:10.1002/sim.9548>.
Authors:
riAFTBART_0.3.3.tar.gz
riAFTBART_0.3.3.zip(r-4.5)riAFTBART_0.3.3.zip(r-4.4)riAFTBART_0.3.3.zip(r-4.3)
riAFTBART_0.3.3.tgz(r-4.4-any)riAFTBART_0.3.3.tgz(r-4.3-any)
riAFTBART_0.3.3.tar.gz(r-4.5-noble)riAFTBART_0.3.3.tar.gz(r-4.4-noble)
riAFTBART_0.3.3.tgz(r-4.4-emscripten)riAFTBART_0.3.3.tgz(r-4.3-emscripten)
riAFTBART.pdf |riAFTBART.html✨
riAFTBART/json (API)
# Install 'riAFTBART' in R: |
install.packages('riAFTBART', repos = c('https://freyrray.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 months agofrom:d7493e0d6f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | OK | Oct 27 2024 |
R-4.5-linux | OK | Oct 27 2024 |
R-4.4-win | OK | Oct 27 2024 |
R-4.4-mac | OK | Oct 27 2024 |
R-4.3-win | OK | Oct 27 2024 |
R-4.3-mac | OK | Oct 27 2024 |
Exports:cal_PEHEcal_surv_probdat_simintreeplot_gpsriAFTBARTriAFTBART_fitsavar_select
Dependencies:BARTclicodacodetoolscolorspacecowplotcpp11data.tabledbartsDBIdeldirdoParalleldplyrexpmfansifarverforeachgbmgenericsggplot2gluegtableinterpisobanditeratorsjpegjsonlitelabelinglatticelatticeExtralifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackmgcvminqamitoolsmsmmunsellmvtnormnlmennetnumDerivpillarpkgconfigpngpurrrquantregR6randomForestRColorBrewerRcppRcppArmadilloRcppEigenrlangRRFscalesSparseMstringistringrsurveysurvivaltibbletidyrtidyselecttwangutf8vctrsviridisLitewithrxgboostxtable