Package: riAFTBART 0.3.3

riAFTBART: A Flexible Approach for Causal Inference with Multiple Treatments and Clustered Survival Outcomes

Random-intercept accelerated failure time (AFT) model utilizing Bayesian additive regression trees (BART) for drawing causal inferences about multiple treatments while accounting for the multilevel survival data structure. It also includes an interpretable sensitivity analysis approach to evaluate how the drawn causal conclusions might be altered in response to the potential magnitude of departure from the no unmeasured confounding assumption.This package implements the methods described by Hu et al. (2022) <doi:10.1002/sim.9548>.

Authors:Liangyuan Hu [aut], Jiayi Ji [aut], Fengrui Zhang [cre]

riAFTBART_0.3.3.tar.gz
riAFTBART_0.3.3.zip(r-4.5)riAFTBART_0.3.3.zip(r-4.4)riAFTBART_0.3.3.zip(r-4.3)
riAFTBART_0.3.3.tgz(r-4.4-any)riAFTBART_0.3.3.tgz(r-4.3-any)
riAFTBART_0.3.3.tar.gz(r-4.5-noble)riAFTBART_0.3.3.tar.gz(r-4.4-noble)
riAFTBART_0.3.3.tgz(r-4.4-emscripten)riAFTBART_0.3.3.tgz(r-4.3-emscripten)
riAFTBART.pdf |riAFTBART.html
riAFTBART/json (API)

# Install 'riAFTBART' in R:
install.packages('riAFTBART', repos = c('https://freyrray.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.28 score 19 scripts 536 downloads 9 exports 75 dependencies

Last updated 9 months agofrom:d7493e0d6f. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 25 2025
R-4.5-winOKJan 25 2025
R-4.5-linuxOKJan 25 2025
R-4.4-winOKJan 25 2025
R-4.4-macOKJan 25 2025
R-4.3-winOKJan 25 2025
R-4.3-macOKJan 25 2025

Exports:cal_PEHEcal_surv_probdat_simintreeplot_gpsriAFTBARTriAFTBART_fitsavar_select

Dependencies:BARTclicodacodetoolscolorspacecowplotcpp11data.tabledbartsDBIdeldirdoParalleldplyrexpmfansifarverforeachgbmgenericsggplot2gluegtableinterpisobanditeratorsjpegjsonlitelabelinglatticelatticeExtralifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackmgcvminqamitoolsmsmmunsellmvtnormnlmennetnumDerivpillarpkgconfigpngpurrrquantregR6randomForestRColorBrewerRcppRcppArmadilloRcppEigenrlangRRFscalesSparseMstringistringrsurveysurvivaltibbletidyrtidyselecttwangutf8vctrsviridisLitewithrxgboostxtable