Package: riAFTBART 0.3.3

riAFTBART: A Flexible Approach for Causal Inference with Multiple Treatments and Clustered Survival Outcomes

Random-intercept accelerated failure time (AFT) model utilizing Bayesian additive regression trees (BART) for drawing causal inferences about multiple treatments while accounting for the multilevel survival data structure. It also includes an interpretable sensitivity analysis approach to evaluate how the drawn causal conclusions might be altered in response to the potential magnitude of departure from the no unmeasured confounding assumption.This package implements the methods described by Hu et al. (2022) <doi:10.1002/sim.9548>.

Authors:Liangyuan Hu [aut], Jiayi Ji [aut], Fengrui Zhang [cre]

riAFTBART_0.3.3.tar.gz
riAFTBART_0.3.3.zip(r-4.5)riAFTBART_0.3.3.zip(r-4.4)riAFTBART_0.3.3.zip(r-4.3)
riAFTBART_0.3.3.tgz(r-4.4-any)riAFTBART_0.3.3.tgz(r-4.3-any)
riAFTBART_0.3.3.tar.gz(r-4.5-noble)riAFTBART_0.3.3.tar.gz(r-4.4-noble)
riAFTBART_0.3.3.tgz(r-4.4-emscripten)riAFTBART_0.3.3.tgz(r-4.3-emscripten)
riAFTBART.pdf |riAFTBART.html
riAFTBART/json (API)

# Install 'riAFTBART' in R:
install.packages('riAFTBART', repos = c('https://freyrray.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.28 score 19 scripts 538 downloads 9 exports 75 dependencies

Last updated 6 months agofrom:d7493e0d6f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:cal_PEHEcal_surv_probdat_simintreeplot_gpsriAFTBARTriAFTBART_fitsavar_select

Dependencies:BARTclicodacodetoolscolorspacecowplotcpp11data.tabledbartsDBIdeldirdoParalleldplyrexpmfansifarverforeachgbmgenericsggplot2gluegtableinterpisobanditeratorsjpegjsonlitelabelinglatticelatticeExtralifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackmgcvminqamitoolsmsmmunsellmvtnormnlmennetnumDerivpillarpkgconfigpngpurrrquantregR6randomForestRColorBrewerRcppRcppArmadilloRcppEigenrlangRRFscalesSparseMstringistringrsurveysurvivaltibbletidyrtidyselecttwangutf8vctrsviridisLitewithrxgboostxtable